Tracking Approximate Solutions of Parameterized Optimization Problems over Multi-Dimensional (Hyper-)Parameter Domains
نویسندگان
چکیده
Many machine learning methods are given as parameterized optimization problems. Important examples of such parameters are regularizationand kernel hyperparameters. These parameters have to be tuned carefully since the choice of their values can have a significant impact on the statistical performance of the learning methods. In most cases the parameter space does not carry much structure and parameter tuning essentially boils down to exploring the whole parameter space. The case when there is only one parameter received quite some attention over the years. First, algorithms for tracking an optimal solution for several machine learning optimization problems over regularizationand hyperparameter intervals had been developed, but since these algorithms can suffer from numerical problems more robust and efficient approximate path tracking algorithms have been devised and analyzed recently. By now approximate path tracking algorithms are known for regularizationand kernel hyperparameter paths with optimal path complexities that depend only on the prescribed approximation error. Here we extend the work on approximate path tracking algorithms with approximation guarantees to multi-dimensional parameter domains. We show a lower bound on the complexity of approximately exploring a multidimensional parameter domain that is the product of the corresponding path complexities. We also show a matching upper bound that can be turned into a theoretically and practically efficient algorithm. Experimental results for kernelized support vector machines and the elastic net confirm the theoretical complexity analysis. Proceedings of the 32 International Conference on Machine Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copyright 2015 by the author(s).
منابع مشابه
Solving Multi-objective Optimal Control Problems of chemical processes using Hybrid Evolutionary Algorithm
Evolutionary algorithms have been recognized to be suitable for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. This paper applies an evolutionary optimization scheme, inspired by Multi-objective Invasive Weed Optimization (MOIWO) and Non-dominated Sorting (NS) strategi...
متن کاملFuzzy adaptive tracking control for a class of nonlinearly parameterized systems with unknown control directions
This paper addresses the problem of adaptive fuzzy tracking control for aclass of nonlinearly parameterized systems with unknown control directions.In this paper, the nonlinearly parameterized functions are lumped into the unknown continuous functionswhich can be approximated by using the fuzzy logic systems (FLS) in Mamdani type. Then, the Nussbaum-type function is used to de...
متن کاملPareto-optimal Solutions for Multi-objective Optimal Control Problems using Hybrid IWO/PSO Algorithm
Heuristic optimization provides a robust and efficient approach for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. The convergence rate and suitable diversity of solutions are of great importance for multi-objective evolutionary algorithms. The focu...
متن کاملApproximate Pareto Optimal Solutions of Multi objective Optimal Control Problems by Evolutionary Algorithms
In this paper an approach based on evolutionary algorithms to find Pareto optimal pair of state and control for multi-objective optimal control problems (MOOCP)'s is introduced. In this approach, first a discretized form of the time-control space is considered and then, a piecewise linear control and a piecewise linear trajectory are obtained from the discretized time-control space using ...
متن کاملSome New Analytical Techniques for Duffing Oscillator with Very Strong Nonlinearity
The current paper focuses on some analytical techniques to solve the non-linear Duffing oscillator with large nonlinearity. Four different methods have been applied for solution of the equation of motion; the variational iteration method, He’s parameter expanding method, parameterized perturbation method, and the homotopy perturbation method. The results reveal that approxim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015